Equilibration timescale of atmospheric secondary organic aerosol partitioning
نویسندگان
چکیده
[1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, teq, of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. teq is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, teq increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration. Citation: Shiraiwa, M., and J. H. Seinfeld (2012), Equilibration timescale of atmospheric secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801, doi:10.1029/2012GL054008.
منابع مشابه
Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction
This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasisteady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and...
متن کاملComparing the mechanism of water condensation and evaporation in glassy aerosol.
Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the con...
متن کاملDevelopment and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation
[1] A module for predicting the dynamic evolution of the gas phase species and the aerosol size and composition distribution during formation of secondary organic aerosol (SOA) is presented. The module is based on the inorganic gas-aerosol equilibrium model Simulating the Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2) and updated versions of the lumped Caltech Atmospheric Chemis...
متن کاملSecondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents
[1] A model that predicts secondary organic aerosol (SOA) formation based on the thermodynamic equilibrium partitioning of secondary organic oxidation products has been developed for implementation into atmospheric models. Hydrophobic secondary products are assumed to partition to an absorbing organic aerosol consisting of primary organic aerosol (POA) and other secondary hydrophobic organics a...
متن کاملGrowth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol.
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of ...
متن کامل